Author avatar

axiom

by aasherkamal216

Server

Tags

#agent #chainlit #docker #gemini #langgraph #mcp #deepseek #openrouter
4.8 (120)

Axiom - A Docs Expert Agent

Axiom is AI Agent specialized in modern AI frameworks, libraries and tools. It can assist in creating AI Agents, RAG systems, chatbots, authentication mechanisms, and even full-stack development. It is built with LangGraph, MCP Docs Server, Chainlit and Gemini Models, designed to help users create different projects using natural language instructions.

AxiomAgent

Features

  • 🤖 Interactive chat interface
  • 📚 Access to multiple documentation sources
  • 🦾 Support for multiple Gemini models
  • 🎨 Support for image processing and analysis
  • 📈 Use images and graphs to create production-ready code
  • 🛠️ Customizable model settings (temperature, model version)
  • 🌐 Docker support for containerized deployment

Documentation Sources

Axiom used llms.txt of the given documentations and fetches content based on the URLs in llms.txt. The agent has access to following documentations:

  • LangGraph Python
  • CrewAI
  • Model Context Protocol (MCP)
  • Chainlit
  • FastHTML
  • Supabase
  • Pinecone
  • Composio
  • Mem0
  • Zep
  • Stripe
  • Resend
  • Upstash
  • Netlify
  • Clerk Auth
  • Stack Auth

Prerequisites

  • UV package manager
  • Python 3.11+
  • Google Gemini API Key
  • Docker (optional): If you intend to use the Dockerfile, you'll need Docker installed.

Installation

  1. Clone the repository:
git clone https://github.com/aasherkamal216/Axiom.git
cd Axiom
  1. Create and Activate Virtual Environment:
uv venv
.venv\Scripts\activate # For Windows
source .venv/bin/activate # for Mac
  1. Install dependencies:
uv sync
  1. Set up environment variables:
cp .env.example .env

Add your API keys and other credentials in .env file.

[!NOTE] If you want to disable authentication, you can remove chainlit.yaml file. Also remove the Oauth Callback function from src/axiom/app.py.

Usage

Run the application:

  • First run the MCP Doc server:
uv run mcpdoc --yaml docs_config.yaml --transport sse --port 8082 --host localhost
  • Then run chainlit interface:
uv run chainlit run app.py -w

The application will be available at http://localhost:8000.

Building the Docker image (Optional)

Alternatively, you can use Docker to run the application:

docker build -t axiom .
docker run -p 7860:7860 -p 8082:8082 axiom

Adding More Docs

You can add more documentations in docs_config.yaml file. Any documentation with a llms.txt file can be added to the list.

Related Services

playwright-mcp

Server

4.8 (120)
View Details →

blender-mcp

Server

4.8 (120)
View Details →

tavily-mcp

Server

4.8 (120)
View Details →